Frequency Domain Model Validation in Wasserstein Metric

Abhishek Halder and Raktim Bhattacharya

Department of Aerospace Engineering
Texas A&M University
College Station, TX 77843-3141

American Control Conference
June 19, 2013
Motivation: Density based Model Validation

- True (but unknown) dynamics: Lorenz system with parameters
 \(\sigma = 10, \beta = \frac{8}{3}, \rho = 2 \)

 \[
 \begin{align*}
 \dot{x}_1 &= \sigma (x_2 - x_1) \\
 \dot{x}_2 &= x_1 (\rho - x_3) - x_2 \\
 \dot{x}_3 &= x_1 x_2 - \beta x_3
 \end{align*}
 \]

- Model: linearization about the fixed point
 \((x^*, y^*, z^*) = \left(\sqrt{\beta(\rho - 1)}, \sqrt{\beta(\rho - 1)}, \rho - 1 \right) \)
Nonlinear model validation depends on the choice of x_0

- True with $x_0 = (0, 1, 1.05)$, True with $x_0 = (0, 1, 1.050001)$
Nonlinear model validation depends on the choice of x_0

- True with $x_0 = (0, 1, 1.05)$, True with $x_0 = (0, 1, 1.050001)$
- Model with $x_0 = (0, 1, 1.05)$, Model with $x_0 = (0, 1, 1.050001)$
Nonlinear model validation depends on the choice of ρ

- True with $\rho = 14$, True with $\rho = 28$, fixed $x_0 = (0, 1, 1.05)$
Motivation: Density based Model Validation

\[\dot{x}_1 = -x_2, \quad \dot{x}_2 = \sin x_1, \]

\[y = x = (x_1, x_2)^\top. \]

Compare trajectories densities
Summary of the proposed Model Validation formulation

Halder, and Bhattacharya, “Further Results on Probabilistic Model Validation in Wasserstein Metric”, CDC 2012.
Summary of the proposed Model Validation formulation

Question: does this have a systems-theoretic interpretation?

Abhishek Halder (TAMU) Frequency Domain Model Validation ACC 2013, Washington, DC
Consider two stable LTI systems with transfer functions (matrices) G and \hat{G}, excited by Gaussian white noise $u(t) \sim \mathcal{N}(0, \text{diag}(\sigma_u^2))$, then

1. **SISO and MISO:**
 \[
 W_\infty (G, \hat{G}) = \sqrt{2\pi \sigma_u} \left| \|G(j\omega)\|_2 - \|\hat{G}(j\omega)\|_2 \right|
 \]

2. **MIMO:**
 \[
 W_\infty (G, \hat{G}) = \sqrt{2\pi \sigma_u} \left(\|G(j\omega)\|_2^2 + \|\hat{G}(j\omega)\|_2^2 \right) - 2 \text{tr} \left[\left(\frac{1}{2\pi} \int_{-\infty}^{+\infty} G^H(j\omega) G(j\omega) d\omega \right)^{1/2} \left(\frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{G}^H(j\omega) \hat{G}(j\omega) d\omega \right)^{1/2} \right]^{1/2}
 \]
Observation: the "green gap" $\to 0$, if $[\Sigma_\infty, \hat{\Sigma}_\infty] \to 0$.

(Open problem: when does an algebraic Riccati pair commute?)

Question: how to normalize the Wasserstein metric?

Question: can we compare it with existing metrics?

Bounds for MIMO W_∞
Observation: the “green gap” → 0, if $\left[\Sigma_\infty, \hat{\Sigma}_\infty \right] \to 0$.

(Open problem: when does an algebraic Riccati pair commute?)
Bounds for MIMO W_∞

Observation: the "green gap" $\rightarrow 0$, if $[\Sigma_\infty, \hat{\Sigma}_\infty] \rightarrow 0$.

(Open problem: when does an algebraic Riccati pair commute?)

Question: how to normalize the Wasserstein metric?

Question: can we compare it with existing metrics?
Geometric Meaning & Intrinsic Normalization of SISO \mathcal{W}_∞

Abhishek Halder (TAMU) Frequency Domain Model Validation ACC 2013, Washington, DC
Geometric Meaning & Intrinsic Normalization of SISO W_∞

Abhishek Halder (TAMU) Frequency Domain Model Validation ACC 2013, Washington, DC
Comparing W_∞ and $\delta_\nu := \sup_\omega \kappa(\omega)$

- **Un-normalized comparison on Complex plane:**
 \[
 \sup_\omega \kappa^{\text{proj}}(\omega) \geq W_\infty
 \]

- **Normalized comparison on Riemann sphere:**
 \[
 \overline{W}_S \left(G, \hat{G} \right) = \frac{2}{\pi} \left| \arctan \|G\|_2 - \arctan \|\hat{G}\|_2 \right|,
 \text{compare } \overline{W}_S \text{ with } \delta_\nu
 \]
Summary

- Frequency-domain formula for LTI model validation with stochastic forcing
- Intrinsic normalization
- Comparison with ν-gap metric for single output case

Future work

- LTI validation between minimum and non-minimum phase systems
- Systems-theoretic interpretation for nonlinear systems
- Closed-loop model validation
Summary

- Frequency-domain formula for LTI model validation with stochastic forcing
- Intrinsic normalization
- Comparison with ν-gap metric for single output case

Future work

- LTI validation between minimum and non-minimum phase systems
- Systems-theoretic interpretation for nonlinear systems
- Closed-loop model validation

Funding support: NSF CSR Award # 1016299

Thank you.